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We present an analysis of optical techniques for the detection of chemical warfare agents and toxic
industrial chemicals in real-world conditions. We analyze the problem of detecting a target species
in the presence of a multitude of interferences that are often stochastic and we provide a broadly
applicable technique for evaluating the sensitivity, probability of false positivessPFPd, and
probability of false negativessPFNd for a sensor through the illustrative example of a laser
photoacoustic spectrometersL-PASd. This methodology includess1d a model of real-world air
composition, s2d an analytical model of an actual field-deployed L-PAS,s3d stochasticity in
instrument response and air composition,s4d repeated detection calculations to obtain statistics and
receiver operating characteristic curves, ands5d analyzing these statistics to determine the sensor’s
sensitivity, PFP, and PFN. This methodology was used to analyze variations in sensor design and
ambient conditions, and can be utilized as a framework for comparing different sensors. ©2005
American Institute of Physics. fDOI: 10.1063/1.1900931g

I. INTRODUCTION

The terrorist events of September 11, 2001, subsequent
anthrax mailings, and the earlier 1995 Tokyo subway sarin
attack by the Aum Shinrikyo cult has heightened worldwide
awareness of the catastrophic social impact of potential
large-scale attacks using chemical warfare agentssCWAsd,
and has exposed the critical need for the reliable, unambigu-
ous, and early detection of trace CWAs and toxic industrial
chemicalssTICsd in the air. Despite the fact that all countries
worldwide are signatories to the Chemical Weapons
Convention,1 which bans the use of CWAs, the U.S. defense
establishments have considered their use possible and thus
have developed battlefield sensors for the ambient detection
of CWAs to protect troops. However, CWA sensors suitable
for civilian use in places such as airports, railroad stations,
large public and private office buildings, theaters, sports are-
nas, etc., have received much less attention. Such civilian
sensors may be required to meet different performance crite-
ria than those deployed in battlefields. For example, in public
settings there is a need for the early detection of CWAs so
that parts of buildings can be rapidly isolated or evacuated,
while a low probability of false positivessPFPd is a necessity
to avoid the adverse economic impact caused by false alarms
leading to unnecessary evacuations.

This paper presents an analysis of the capability of opti-
cal techniques, using laser photoacoustic spectroscopysL-
PASd as an example, for the detection of CWAs and TICs by
explicitly incorporating the stochastic nature of sensor noise
characteristics and interferences in a real-world situation.
This analysis, based on a model developed to simulate an

actual trace gas sensor, yields theoretical receiver operational
characteristicsROCd curves, which include quantitative sen-
sitivity, selectivity, PFP, and PFN as a function of instrument
noise characteristics, spectrometer spectral coverage, and air
composition. Thus, this paper provides a universal road map
for optimizing the performance of trace gas sensors in the
presence of interferences and for performing useful inter-
comparisons of different techniques.

We use L-PAS to illustrate the analytical methodology
by s1d simulating real-world air that represents a complicated
mix of potential interferences,s2d creating an analytical
model of the L-PAS sensor,s3d incorporating stochasticity to
the model by adding random noise proportional the instru-
ment’s precision and varying interference concentrations,s4d
simulating the operation of the sensor model by performing
repeated sample calculations to yield useful statistics and
ROC curves, and thens5d analyzing these statistics to deter-
mine the sensor’s replicate precisionssensitivityd, PFPsse-
lectivityd, and probability of false negativessPFNd sreliabil-
ityd.

A brief background on photoacoustic IR spectroscopy is
included in Sec. II. Section III describes the simulation
model developed to evaluate the sensor performance, com-
prising a model of realistically contaminated air, a model of
actual sensor performance, and quantitative spectral libraries.
Section IV presents the results of a L-PAS sensor perfor-
mance simulation for CWA detection. Section V extends the
analysis to predict performance of notional sensors with dif-
ferent operational characteristics and different levels of air
contamination, thus, providing “scaling laws” for optical
sensors and permitting sensor performance evaluations in ex-
treme situations. Section VI summarizes the results and pro-
vides conclusions.
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II. OPTICAL DETECTION OF TRACE GASES

IR-absorption spectroscopy is a powerful tool for trace
gas detection because a vast majority of polyatomic mol-
ecules including CWAs, TICs, and explosives absorb light in
the wavelength region from 3 to 14µm. Figure 1 shows2 the
IR spectra of nerve gases, mustards, and TNT, illustrating
that the most prominent features for many species of interest
lie between 3 and 11.5µm, and Table I lists some of the
pertinent species that can be detected in different wavelength
regions.

A. Sensor requirements

When evaluating an optical detection technology, the
following performance characteristics are important:

s1d Sensitivity. Detection sensitivity is a key indicator of
overall sensor performance and relates to the minimum
gas concentrations that are reliably detected. A good sen-
sitivity enables detecting CWAs or TICs before the con-
centration rises to dangerous levels, monitoring at low
levels for long-term exposure problems, and determining
when an attack site is safe to reenter.

s2d Specificity. Specificity, i.e., the ability to distinguish be-
tween different CWAs, is important to first responders in
order to provide appropriate treatments subsequent to
the exposure. Specificity yields information not only
abouthow muchof a toxic gas is present but alsowhich
gas is present.

s3d Probability of false positives (PFP). This number repre-
sents the fraction of measurements that falsely indicate
that a toxic gas is present when in reality it is not. Such
false alarms often arise from interfering gases that might
also be present in the indoor or outdoor environments
and typically represent the most significant operational
difficulty for field-deployed sensors. A very low PFP is
desirable since false alarms cause substantial and expen-
sive disruption in the normal routine of those at the mea-
surement site.

s4d Probability of false negatives (PFN). This number re-
flects the fraction of measurements that falsely indicate
that a toxic gas isnot present even though it is present at
or above the set threshold level. A low PFN is desired in
order to prevent unknown exposure to toxic air.

s5d Response time. Near real-time functionalitysresponse
time ø60 sd is necessary to provide warnings that are
useful for protecting people by isolating locations under
attack and evacuating attack sites.

s6d Recovery time. This parameter reflects the time that a
sensor requires to recover from a high reading, whether
after an exposure to CWAs and/or TICs or a false read-

FIG. 1. sColord Infrared-absorption spectra for CWAs, mustards, and TNT.

TABLE I. CWAs, TICs, and explosives that can be detected in specific
spectral regions.

9–11.5µm
CWAs Lewisite, nitrogen mustardsH-N3d, sulfur mustardsHDd,

4-dithiane, diisopropyl methylphosphonatesDIMPd,
dimethyl methylphosphonatesDMMPd, isoamyl alcohol,
methylphosphonic difluoridesDIFLUORd, cyclosarin
sGFd, sarinsGBd, somansGDd, tabunsGAd, VX, triethyl
phosphatesTEPd, 2-diisopropylaminoethanolsDIPAEd

TICs Ammonia, arsine, boron trichloride, ethylene oxide, nitric
acid

4–9 µm
CWAs MustardsH-N3d, sulfur mustardsHDd, 4-dithiane
TICs Boron trifluoride, carbon disulfide, diborane,

formaldehyde, hydrogen cyanide, hydrogen sulfide, nitric
acid, phosgene, sulfur dioxide, tungsten hexafluoride

Explosives TNT, PETN
2.5–4µm

TICs HBr, HCl, HF
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ing prompted by the presence of an interfering gas.

Designing a sensor to simultaneously satisfy these stan-
dards requires quantitative understanding of the sensor’s op-
erational characteristics as well as the nature of interferences
expected in a realistic environment and their impact on the
sensor’s operational characteristics.

B. Required instrument sensitivity

The required sensitivity for CWA detection can be deter-
mined by the toxicity levels of particular agents, most of
which have been reasonably well documented.3 The concen-
trations and related health effects for sarinsGBd, a typical
nerve CWA, are summarized in Table II.

For a 30-min exposure to sarin, the lethal concentration
is approximately 575 ppbsparts per 109d, or 3.3 mg/m3,
while the first noticeable health effectsmiosis3,4d occurs at
33.3mg/m3 s5.8 ppbd. For the general population, the sug-
gested limit would be 27 ng/m3 f4.7 pptsparts per 1012dg for
an 8-h exposure. Thus, to protect the population from harm
in the event of a sarin attack, reasonable design targets for
CWA sensors includes1d a sensitivity of approximately 1
ppb swell below the harm threshold for a 30-min exposured,
ands2d a measurement time shorter than 1-min to allow rea-
sonable time for isolation or evacuation. The thresholds for
harm from the other CWAs are similar.3

The CWAs have absorption strengths of,s3–6d
310−3 sppm md−1 sFig. 1d. For illustration, we use VX as a
typical CWA, having a peak absorption of 2
310−3 sppm md−1 at 9.6µm. Consequently, the infrared ab-
sorption at 9.6 µm from 1 ppb of VX would be 2
310−8 cm−1. Thus, detecting CWAs at ppb to sub-ppb levels
using optical-absorption techniques requires an absorption
measurement capability as low as 10−8 cm−1.

C. Selectivity in the presence of interferences

Though sensitivity is a key parameter for a trace gas
detection sensor, it is the selectivitysthe ability to discrimi-
nate the target from interferences to avoid false alarmsd that
becomes the limiting performance factor when the sensors
are used in real-world settings. In these environments, the
ambient air is often heavily contaminated with potential in-
terferences.

Traditionally, optical-absorption spectroscopy sensors
avoid the effect of interferences by measuring absorption ei-
ther at a single wavelength or over a narrow wavelength
region where the target gas absorbs, but the other gases in the
sample do not absorb. This approach has been successful for

the detection of smaller molecules in relatively clean
samples, where the target gas spectra are sharp and the po-
tential interferences are minimal. However, because CWAs
and a majority of interferents that are encountered in realistic
air samples are relatively large polyatomic molecules, their
IR spectra are characterized by broad absorption features as
seen from Fig. 2 that shows the infrared-absorption spectrum
of VX and an interferent, butyl acetate. The spectra are sev-
eral hundred nanometers wide, which is typical of CWAs and
interferents, and overlap significantly between 9.5 and 9.9
µm. Since the targets and interferents absorb the probe light
at many of the same wavelengths, selective spectroscopic
detection of the target requires the acquisition of the spec-
trum over a broad wavelength range followed by quantitative
decomposition into the contributing spectral signatures of the
targets and interferences. Thus optical-absorption sensors
that operate over a narrow wavelength range would not be
able to adequately distinguish these two species.

A sensor’s selectivity is typically explained quantita-
tively through the PFPsor false alarm rated. For a sensor that
has a 1-min measurement time, a reasonable design target is
to achieve a PFP less than 2310−6, which corresponds to a
false alarm rate of,1 per year.

D. Photoacoustic spectroscopy

As described, sensors need to detect optical absorptions
as small as 10−8 cm−1. There are a number of optical tech-
niques that permit measurements of such small optical ab-
sorptions, the most common of which are long path absorp-
tion measurementsse.g., multipass cells and cavity ring-
down spectroscopy5d and calorimetric techniquesse.g.,
photoacoustics6d. In this paper, we do not compare the rela-
tive merits of various techniques, but we use the example of
L-PAS because reliable instruments based on this technique
are commercially available for ppb and sub-ppb detection of
a variety of relevant trace gases and because it meets the
sensitivity requirements as explained in Sec. II B.7–10 L-PAS
is often used11 with high-power CO2 lasers that provides1d
wide tunability necessary for measuring CWAs in the pres-
ence of interferences,s2d high resolution for distinguishing

TABLE II. Summary of allowable sarin dosesRef. 3d for different health
effects.

Health effect Dose Remarks

Lethal s50%d 100 mg min/m3 Resting
Incapacitations50%d 75 mg min/m3 Resting
Miosis 1 mg min/m3

Occupational limit 48mg min/m3 8 h/day, 40 h/week, 40 yr
General population 12.96mg min/m3

FIG. 2. IR-absorption spectra of VX and a potentially interfering species,
butyl acetate.
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sharp spectral features, ands3d an excellent spectral overlap
with the wavelength region where most CWAs and many
TICs absorb. Though L-PAS is used for illustrative purposes,
the analysis presented here is independent of the specific
absorption measurement technique, as discussed in the con-
cluding section of this paper.

L-PAS involves absorption of the modulated laser radia-
tion followed by deactivation of the excited molecule via
collisions, which convert the absorbed energy into periodic
local heating at the modulation frequency, and generate
acoustic waves that can be monitored using low-noise
microphones.9–16

The photoacoustic signalS in volts is7

S= SmPCa, s1d

where the microphone sensitivitySm is in units of V/Pa, the
powerP is in watts, the absorption coefficienta is in cm−1,
and the cell factorC has units of Pa cm−1 W. The photoa-
coustic signal is linearly proportional to the incident laser
power and absorption coefficient at the laser wavelength.
Thus, photoacoustic detection of trace-gases-derives sensi-
tivity benefit from the use of as much laser power as is ap-
propriate. To first order, L-PAS is a zero base line technique
si.e., if the gases that are present do not absorb the light, then
the transducer yields no signald and is typically linear over
five orders of magnitude, and thus shows magnificent dy-
namic range.17

III. SIMULATION OF L-PAS CWA SENSOR:
SENSITIVITY, PFP, AND PFN EVALUATION

A model of a tunable CO2 L-PAS sensor was created
using s1d characteristics of an actual field-deployed unit and
the spectral information of relevant CWAs and TICs, ands2d
potential interferents that might be present.

A. The field-deployed sensor

The field-deployed sensor’s photoacoustic cell and de-
tection have the following characteristics:

s1d The optical window materials are chosen to have very
low optical-absorption loss in the wavelength regions of
interest.

s2d The photoacoustic cell is operated in a longitudinal reso-
nant mode at,2 kHz, and the laser radiation is ampli-
tude modulated at the resonant frequency.

s3d The optical windows are attached to the photoacoustic
cell through a transition region of much larger diameter
and much shorter length than the photoacoustic cell.
Thus the resonant frequency of the window attachment
chamber is much different from the modulation fre-
quency and is nonresonant. Thus the acoustical signal
created by the residual optical absorption in the optical
window is not resonantly amplified. There is, further-
more, a substantial acoustical impedance mismatch be-
tween the window attachment sections and the photoa-
coustic cell. The nonresonant nature of the window
attachment sections, the large impedance mismatch be-
tween the window attachment chambers and the photoa-
coustic cell, and the use of ultralow loss window mate-

rials result in negligible photoacoustic signal
contribution from windows to the signal arising from
optical absorption from the gases present in the photoa-
coustic cell. Finally the window absorption signals,
small as they are, are relatively independent of the laser
wavelength. Thus, the measurement of the gaseous
sample at multiple laser wavelengths permits an almost
complete elimination of the window noise problem.

s4d The photoacoustic cell is operated at a constant tempera-
ture of 42 °C and a pressure of near 760 Torr to mini-
mize problems that may arise from changing the tem-
perature or pressure.

s5d When detecting photoacoustic signal, the deployed sen-
sor measures both the in-phase and out-of-phase compo-
nents of the signal at all wavelengths. Thus, the sensor
keeps track of both the amplitude and the phase of the
photoacoustic signal.

The model derived from an actual field-deployed sensor
sSec. III Bd was then used repeatedly to simulate CWA de-
tection in the presence of interferences to yield statistics that
could be used to estimate the L-PAS sensor’s sensitivity,
PFN, and PFP. The model incorporates the stochastic nature
of sensor instrumentation by adding appropriate noise to the
simulated L-PAS spectrum, while the stochastic nature of the
interference composition is accounted for by varying the cal-
culated contamination in different air samples. The model
presented below simulates sensor performance as a function
of three parameters:

sad spectral range available from the laser,
sbd the stochastic noise characteristics of an actual L-PAS

sensor, including floor noise, precision, and integration
time, and

scd list of targets and probable interferences with their ex-
pected concentrations and their quantitative spectra
si.e., the spectral librariesd.

B. Model: The sensor

The sensor model is derived from actual performance
characteristics of a practical field instrument that measures
ambient ammonia in the presence of interferences using a
line tunable CO2 L-PAS sensor. This sensor7,8 uses a13CO2
laser with 5 W of average output power operating on its
10Rs18d transition near 10.784µm to interrogate ammonia’s
strongQQ6s6da transition. Interferences from CO2, H2O con-
tinuum, and window absorptions are subtracted by switching
to neighboring laser lines, yielding a replicate precision8 of
32 ppt. This detectivity corresponds to a minimum detectable
fractional absorbance of 8.8310−9, and a minimum detect-
able absorption coefficient of 9.6310−10 cm−1, thereby sat-
isfying the sensitivity requirementsssee Sec. II Bd. The line-
switching algorithm can be extended over many laser lines
and combined with linear pattern recognition11 to detect
many species in the presence of a vast majority of interfer-
ences encountered in contaminated outdoor or indoor air.
From the measurements with clean air8 we derive the sto-
chastic instrument noise to be 0.2% of the signal amplitude.
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C. Model: Air composition and spectral library
compilation

Because interferences play an important role in deter-
mining the sensor performance in the field, we simulate re-
alistic measurement conditions by developing a model of
heavily contaminated air that contains a number of trace con-
stituents of anthropogenic and biogenic origin. For example,
outdoor air, even in unpolluted areas, contains CH4, higher
alkanes, NOx, SOx, NH3, O3, CO, and CO2. Urban polluted
air contains fuel vapors, numerous VOCs resulting from in-
complete combustion in car engines and smoke stack emis-
sions, as well as an array of intermediates resulting from
their atmospheric degradation. Rural air may be contami-
nated by emissions from agricultural operations leading to
significant concentrations of ammonia and sulfur-containing
compounds. The sources of the indoor air contamination are
even more diverse and include cleaning agents, products of
out gassing of common construction materials, paints, sol-
vents, perfumes, food, and tobacco smoke.

Since there is no single reference source that comprehen-
sively quantifies realistic air constituents, we complied an
exhaustive list of documented pollutants. Where both mean
and instantaneoussspiked concentration levels are reported in
the literature, the higher spike values are chosen to be repre-
sentative of the highest possible contamination and to serve
as a stricter test. For most chemicals, however, only average
values over multihour measurement periods are available. To
estimate the highest possible spike values, resulting from
spills, we use the results of an analytical model,18 which
considers a vapor diffusion process from a point source in a
reasonably ventilated indoor area. According to this model,
the highest concentration reached in the vicinitys1 m awayd
of the spill is four times the steady-state value established
after the evaporation rate becomes equal to the rate of re-
moval of the vapor via ventilation. Therefore, in the cases
where only mean concentrations were reported, we multi-
plied the highest reported value by a factor of 4 to achieve

the expected spike value. The list includes more than 300
species and represents, possibly, the most complete compila-
tion of published data on the topic and, thus, is the best
practical starting point for evaluating a sensor’s performance
in realistic air.sThe complete list of documented compounds,
their largest reported concentrations, and references to origi-
nal literature sources are not reported here, but may be ob-
tained from the authors.d We have also assembled a digital
quantitative, high-resolutions0.25 cm−1d library of absorp-
tion spectra of each of these potential interferences by using
published databases2 and commercially available databases.

This list of some three hundred species is impractically
large and is truncated for the present analysis by removing a
chemical from further consideration if

s1d it has been reported in indoor air in negligible quantities
such that its optical absorption is less than the equivalent
of 1 ppb of sarins1 ppb of sarin is used as a cutoff since
this number is well below the harm threshold of 5.8 ppb
for a 30-min exposure as seen in Sec. IId, and

s2d if the species does not absorb light appreciably at any
wavelength within the range of the carbon dioxide laser,
and therefore would not interfere with a target gas even
if present in substantial quantities.

Table III lists 45 species that meet the criteria and are
part of the interference library.

Figure 3, showing the absorption spectra of eight target
nerve agents and surrogates at wavelengths accessible with
12CO2 and 13CO2 lasers, indicates that the absorption spec-
trum of DIMP sa relatively harmless surrogate for nerve
agentsd has excellent overlap with the available laser transi-
tions from a 13CO2 laser. Consequently, the modeling was
performed for a13CO2 L-PAS sensor for DIMP detection.
The libraries of spectra were converted into the spectra spe-
cific to a 13CO2 L-PAS by evaluating the absorption coeffi-
cients at the 87 discrete13CO2 laser wavelengths in the 9.6–
11.5-µm range. The spectral signatures of the 45 interferents

TABLE III. 13CO2 L-PAS sensor interference list.

Species
Concentration

sppbd Species
Concentration

sppbd Species
Concentration

sppbd

H2O 40 000 000 Formaldehyde 400 Apinene 60

Ethylene glycol 491 Ozone 15 Acrolein 11

Toluene 2 382 TCTFE 3 2butanone 42

CO2 550 000 pDCB 13 Freon12 370

Ethanol 146 Butanol 21 Isobutanol 2

Ammonia 22 2butoxyethanol 15 TMB 17

Isopropanol 212 2ethylhexanol 8 dlimonene 23

Methanol 16 Benzene 34 1,3-butadiene 5

p-xylene 649 Trichloroethane 148 oDCB 2

Acetic acid 92 Styrene 14 MTBE 13

m-xylene 649 Naphthalene 71 Butane 33

Ethyl benzene 252 Ethylene 10 Freon11 28

Ethyl acetate 16 Chloroethane 20 o-xylene 16

Texanol 25 Acrylonitrile 11 EEACET 2

Butyl acetate 14 Propylene 10 Chloroform 38
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were then used to evaluate matrix elements involved in the
least-squares fitsLSFd spectral decomposition to be de-
scribed in Sec. III D.

D. The simulation model: Spectral decomposition
algorithm

In realistic air both targets and interferents contribute to
the measured L-PAS spectrum. The mathematical problem of
decomposition of a multicomponent spectrum may be solved
using the LSF technique. Using Eq.s1d, a L-PAS spectrum of
the air containing multiple contaminants can be simulated.

In the gas mixture the absorption coefficiental j
at each

wavelengthl j is given by

uAbsorption coefficientul j
= al j

= o
i=1

# species

ai,l j

= o
i=1

# species

Xisi,l j
, s2d

wheresi,l j
is the absorbance for speciesi at wavelenghtl j,

andXi is the mole fraction of the speciesi. According to Eq.
s1d, if Sl j

is the measured photoacoustic signal andPl j
is the

measured laser power at a given wavelenth, the L-PAS spec-
trum sthe set of values of absorption coefficientsal j

versus
wavelengthl jd may be obtained using Eq.s3d,

al jmeasured=
Sl j

SmPl j
C

. s3d

Combining Eqs.s2d ands3d and noting that in any real sensor
a measured absorption coefficiental jmeasuredinevitably con-
tains instrumentation noise yield

al jmeasured= o
i=1

# species

Xisi,l j
+ Noisel j

. s4d

The L-PAS spectrum of a multicomponent mixture is a
linear combination of the known spectra of individual con-
stituents, with the coefficients being the mole fractions of
individual componentsXi plus a stochastic term due to in-
strumental noise of the sensor. During measurements, the
sensor acquires a L-PAS spectrum of a sample. The unknown
mole fractions for each species are subsequently determined
via the linear least-squares fit, i.e., from the requirement that
the sum of the squares of the differences between measured
and simulated absorption coefficientssso-called merit func-
tion x2d over all wavelenghts is minimum,

x2 = o
j

# linesSal jmeasured− o
i=1

# species

Xisi,l jD2

= min. s5d

Using vector-matrix notation, Eq.s4d may be represented as

s6d

Equation s7d gives the LSF values of individual mole
fractionsXi which are the solutions of Eq.s5d,

FIG. 3. sColord Spectra of nerve
agents and12CO2 and 13CO2 laser
wavelengths
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s7d
The LSF algorithm for an ideal sensorswith zero noised

yields the concentration of the target species even in the
presence of multiple interferences ifs1d a quantitative L-PAS
spectral library for all expected targets and interferences ex-
ists, s2d the number of wavelengths used for the measure-
ment is greater than the number of absorbing species, ands3d
the individual spectra are linearly independent. A stochastic
noise term in Eqs.s5d and s6d introduces error in the mea-
sured absorption coefficients and consequently in the best-fit
values ofXi, obtained from Eq.s7d. Sensor model simula-
tions based on Eqs.s4d–s7d, described below, reveal quanti-
tative limitation imposed by stochastic noise on the perfor-
mance of practical sensors.

E. Sensor stochastic noise

To quantitatively analyze the performance of L-PAS for
CWA detectionssensitivity, specificity, PFN, and PFPd, one
needs to understand the sources and evaluate the magnitude
of noise in the detection scheme of the actual L-PAS-based
instrumentation. L-PAS sensor has two critical transducers
that introduce noise: a microphone measuring the photoa-
coustic signalSl j

and a power meter measuring the laser
powerPl j

. Outputs from these two sensors are used to obtain
the absorbance valuesal j

using Eq.s2d. For constant ambi-
ent conditions of the samplestemperature, pressured in the
photoacoustic cell, the uncertainty in the measured absorp-
tion coefficient arises from the sensor noise.

The sensor noise is a sum of noise independent of signal
amplitudesthe floor noised and noise proportional to the total
measured PAS signal amplitude scaled by the instrument pre-
cision b,

Noise =Înfloor
2 + nprecision

2 , s8d

nprecision= Sl j
b. s9d

The fundamental noise floor on photoacoustic detection
arises from the Brownian noise created by the gas molecules
in the photoacoustic sensor and is given by an equivalent
absorbed optical power of about 10−11 W Hz−1/2 at room
temperature.19 For actual instruments, the lowest possible
floor noise value is determined by the specifications of the
transducers, i.e., the power meter and the microphone. The
instrument precision is, in turn, determined by the quality,
i.e., linearity, digitization resolution, etc., of the signal con-

ditioning and data acquisition electronics. Floor noise and
the precision values were determined from a field-deployed
L-PAS sensor, and yielded a precision of approximatelyb
=0.002 with roughly Gaussian stochastic properties and no
obvious systematic components. At this level, the precision
noise exceeds the floor noise by almost three orders of mag-
nitude and the latter can thus be disregarded.

Thus, an absorption spectrum of an air sample contain-
ing a particular mixture of trace gasessboth targets and in-
terferencesd acquired with CO2 L-PAS sensor may be simu-
lated using Eq.s4d with the noise term governed by limited
sensor precision,

al j
= o

i=1

# species

Xisi,l j
s1 + bgaussd, s10d

where b is the sensor precision, and gauss is the function
generating Gaussian-distributed random numbers with a
mean value of 0 and variancesone standard deviationd of 1.
If there is no instrumental noise,b=0, i.e., no stochasticity,
the best-fit valuesXibest fit practically coincide with the values
of Xi used to simulate air in Eq.s10d. As the stochastic in-
strumental noise is added, the LSF produces values ofXibest fit

which differ from the valuesXi from Eq.s10d. The statistical
distribution of this difference allows one to quantitatively
measure the sensor performance.

IV. RESULTS OF THE SIMULATION MODEL:
DETECTION OF CWA

Simulations can now be performed using the analytical
model to predict the PFN, PFP, and sensitivity for the sensor.
The steps leading to the generation of ROC curves are the
following:

• generate a synthetic photoacoustic spectrum of the
“contaminated air” by adding up the absorption spectra
of all interferents at their highest concentrations and
imposing a stochastic noise according to Eq.s10d;

• determine the best-fit mole fraction of a particular target
speciessDIMPd XDIMP-best fit by the LSF analysis of the
synthetic spectrum using Eq.s7d swith all involved ma-
trix elements evaluated using the absorbance values
si,l j

from spectral libraryd; and
• repeat the simulation for a large number of times

s,105d, each time generating a different spectrum due
to the stochastic nature of the gauss function. The re-
sulting distribution of the best-fit concentration values
XDIMP-best fit yields instrument sensitivity, PFP, and PFN
versus detection threshold and challenge, respectively.

A. Sensitivity

The simulation was first performed for the case of 10-
ppbvsparts per 109 by volumed DIMP challenge in clean, dry
air yielding a histogram of results with a deduced average
measurement of 10.00 ppbv and a standard deviation of 20
ppt. These results agree well with the field sensor tests for
ammonia, which has a similar peak absorption coefficient as
DIMP. The simulation for the 10-ppbv DIMP was repeated
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with interferences from a worst-case air modelsTable IIId,
including high humiditys4% H2Od, 550-ppm CO2, and high
VOC density of 23.7 mg/m3, which is nearly two orders of
magnitude greater contamination than that in nominal condi-
tions. For this simulation, the average deduced value is 10.00
ppbv with a standard deviation of 840 pptvsparts per 1012 by
volumed, illustrating the impact of the interfering species.
The histograms of the results for the two simulations are
overlaid in Fig. 4. The impact of the interferences on the
measurement precision is due to the increased absorption co-
efficients measured by the sensor leading to an increase in
their absolute uncertainty due to limited instrumental preci-
sion fEq. s10dg, which leads to an increased uncertainty in
the results of the spectral decomposition algorithm.

B. Probability of false positives

To determine the sensitivity and detection threshold ver-
sus PFPsROC curved, the simulations must be performed
with the interferences present but the target gas absent. The
standard deviation of this distribution is the sensitivity. The
PFP sfor a given thresholdd is determined from the same

distribution by evaluating how often the sensor mistakenly
yields a reading above a predetermined threshold. The simu-
lations with the “worst-case” contaminated air and no DIMP
yielded a histogramsFig. 5d centered at 0.01 ppbv, with a
standard deviation of 850 pptv, which defines the instru-
ment’s sensitivity. The PFP at a particular alarm threshold is
determined from the histogram as the number of readings
above the threshold normalized by the total number of simu-
lations. For example, for a threshold of 1.5 ppbv, the PFP is
the ratio of the integrated area under the curve above 1.5
ppbv sshown asA1 on the plotd and the total integrated area
sshown as the sum ofA1 andA2 on the plotd, indicating that
7.7% of the readings will surpass the threshold and thereby
falsely set off an alarm. Similarly, for an alarm threshold of
4.15 ppb, only 1 in every 106 sensor readings will falsely
trigger the alarm when no DIMP is present. And, of course,
for an alarm threshold of 0 ppb, all measurements will set off
the alarm, yielding a PFP of 100%.

To obtain the ROC curve, i.e., the PFP as a function of
different thresholds, the process is repeated for different
alarm levels. The result, plotted in Fig. 6, indicates that as

FIG. 4. Histogram of simulations of 10-ppbv DIMP
detection in contaminated air overlaid with the histo-
gram from simulated measurements of 10-ppbv DIMP
in clean, dry air.

FIG. 5. Simulated sensor response to 0-ppb DIMP in
contaminated air. The PFP for an alarm threshold of 1.5
ppb is the areaA1 divided by the sum of areasA1 and
A2.
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the threshold level increases the PFP decreases rapidly, and
for the 4-ppb threshold the PFP reaches the value of,10−6.

C. Probability of false negatives

To evaluate the sensor PFN the instrument performance
must be modeled when challenging the system with DIMP at
a level exceeding the alarm threshold and determining the
normalized portion of the histogramsareaA1 divided by area
A1+A2d below an alarm thresholdsareaA1 divided by area
A1+A2d. Figure 7 illustrates PFN calculation for the “worst-
case” air. With an alarm threshold of 1 ppbv and a challenge
of 2-ppbv DIMP, the distribution reveals that 11.3% of the
sensor readings will falsely indicate that DIMP is not
present.

D. Sensitivity, PFP, and PFN

By evaluating the PFN at a range of alarm thresholds,
the PFP curve from Fig. 6 can be color coded to reflect PFP
and PFN simultaneously, as shown in Fig. 8. Combined dis-

play such as the one in Fig. 8 represents an important tool
that allows users to specify alarm settings based on the pri-
orities of their applications.

V. IMPROVEMENTS IN SENSITIVITY FOR DETECTION
OF CWA

The simulation model provides the tools for exploring
ways by which the CWA detection performance may be im-
proved or for testing the limits of the instrument usability in
the case of extreme situations. The model has three input
paramenters: air composition, instrument precision, and laser
spectral coverage. The effects of improving the precision of
the photoacoustic detection and varying the total volatile or-
ganic compound interference load were studied. We have not
studied the effects of varying the spectral coverage because
the tuning range afforded by a CO2 laser is fixed.

FIG. 6. Plot of PFP vs detection threshold for detecting DIMP from simu-
lated measurements of heavily contaminated air with TVOC=23.7 mg/m3,
4% H2O, and 550-ppm CO2 sa total of 45 interferentsd and using 87 laser
lines from a 13CO2 laser. A PFP of 1310−6 is achieved for a detection
threshold of 4.15 ppb.

FIG. 7. Simulated sensor response to 2-ppb DIMP in
contaminated air. The PFN obtained by analyzing the
number of sensor readings that are below a particular
alarm threshold even though DIMP is present at higher
concentrations.

FIG. 8. sColord Plot of PFP and PFN vs detection threshold for detecting
DIMP from simulated measurements of heavily contaminated air with
TVOC=23.7 mg/m3, 4% H2O, and 550-ppm CO2 sa total of 45 interferentsd
and using 87 laser lines from a13CO2 laser.
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A. Improving operational noise characteristic
of the photoacoustic sensor

As can be deduced from the earlier discussion, a limita-
tion to the sensitivity for a desired PFN and PFP comes from
the “noise” from the photoacoustic sensor. As described
above, the limiting factor for the field-deployed L-PAS sen-
sor was its precision, which is the result of the instrument’s
10-bit digitizers9 bits plus signd. The 9-digitization bits give
a maximum resolution of 1:512, or approximately 0.002
times the maximum signal for a precisionb=0.2%. By using
a 16-bit digitizer s15 bits plus signd we can improve the
resolution to 1:32 768, yieldingb=0.003%. With this im-
provement, the noise due to limited precision is still larger
than the floor noise, but only by a factor of 10. The improve-
ment in the overall system performance that can be obtained
by reducing the total noise is shown in Fig. 9, which plots
the results for different values of precision. For example, an
improvement of a factor of 60 in precisionsgoing from a
10-bit digitizer to a 16-bit digitizerd will improve the detec-
tion sensitivity by about the same factor, i.e., 60.

B. Reducing the total level of volatile organic
compound interference

Figure 10 shows the results of simulations for the worst-
case contaminated air, with a total VOCsTVOCd density of
23.7 mg/m3, and for air samples with 23 and 103 less con-
tamination. As the total contamination decreases, the sen-
sor’s selectivity improves. For the worst-case contamination,
a PFP of 1310−6 can be achieved for a detection threshold
of 4.15 ppb. Reducing the contamination by a factor of
10–2.37 mg/m3 lowers that threshold to 0.74 ppb.

C. Increasing the density of sampling wavelengths

The simulation reported here has been carried out using
available laser wavelengths from a13CO2 laser that provides
discrete tuning of laser wavelengths, which are separated by
approximately 1–2 cm−1. Since the performance of such an
optical sensor depends on the quality of shape information
about the total optical absorption presented by the gas
sample, it stands to reason that sampling at additional wave-

lengths to fill in the gaps between the fixed natural frequen-
cies of the13CO2 laser should help. We have explored this
improvement through interspersing the13CO2 laser wave-
lengths with notional additional wavelengths to increase the
density by factors of 2 and 5, i.e., reducing the spacings
between the available sampling wavelengths by factors of 2
and 5, respectively. The simulation carried out to demon-
strate the improvement is shown in Fig. 11. Here, we have
analyzed a slightly different case than that analyzed earlier in
the paper. We use a TVOC loading of 4.35 mg/m3 and 44 of
the 13CO2 laser lines as the reference case. The two addi-
tional curves in the figure show the detection threshold ver-
sus PFPsand PFN using the color-coding scheme described
in connection with Fig. 8d for 88 and 220 sampling wave-
lengths covering the same spectral region as the 44 wave-
length case, but with increased density of lines as described
above. The improvement in the performance is remarkable
and points to the need for the use of perhaps a continuously
tunable lasersin place of the discretely tunable13CO2 laser
described in this simulationd for creating the CWA and TIC
sensor with improved performance.

FIG. 9. sColord Simulated ROC curves illustrating improvement in the PFP
of L-PAS detection with improving the precision of the sensor. FIG. 10. sColord Simulations demonstrating the impact of reducing con-

tamination on the performance of the sensor. Typical indoor air has a total
VOC sTVOCd density of,0.5 mg/m3.

FIG. 11. sColord Performance improvement of the L-PAS sensor by increas-
ing the density of sampling wavelengths.
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VI. CONCLUSIONS

The problem of sensitively detecting CWAs and TICs in
the presence of a realistic array of interferences has been
analyzed by illustrative use of a L-PAS system. An analytical
model for the optical detection of CWAs and TICs has been
developed that can be used forab initio calculations of
L-PAS to determine optimum designs, and was used to
evaluate the sensitivity, PFP, and PFN. Ultimately, the per-
formance of a L-PAS sensor depends on the availability of
high-power broadly tunable laser sources, high precision in-
strumentation, and quantitative spectral libraries.

This L-PAS performancessensitivity and PFPd can be
improved substantially through systematic optimization that
includes improvements in the performance of instrument
components and design, for example, using higher laser out-
put power and tuning range, as well as systematic engineer-
ing improvements, such as using better precision analog-to-
digital sA/Dd converters, transducers, and conditioning
electronics.

The approach described in this paper may be used for
comparing and optimizing the use of other optical detection
technologies for the measurement of CWAs and TICs. The
vehicle we have chosen is the L-PAS. However, the funda-
mental property that we measure is the optical absorption.
Any other technique that yields the optical-absorption signa-
tures, such as long path optical-absorption measurements,
cavity ring-down spectroscopy or Fourier transform infrared
sFTIRd, is also equally well described by the analysis pre-
sented in this paper. In carrying out the analysis for other
modalities of absorption measurements, the photoacoustic
signalS that is directly proportional to the absorption can be
substituted by the actual measured absorption values. The
appropriate “noise” for the system must be added to these
measurements to derive a stochastically dependent variation
of sensitivity with PFP and PFN.

It is clear that the discrete tuning characteristics of the
CO2 laser is probably not optimum for obtaining detailed
information about the shape of absorption in the presence of
interferents. The better the shape information, the better will
be the possibility of rejection of interferences. Our studies
show that by increasing the density of absorption sampling
wavelengths beyond what is available from the13CO2 laser,
for example, through the use of nonlinear mixing techniques
or use of tunable semiconductor lasers, the detection thresh-
old can be improved significantly without sacrificing PFP.
Thus, we suggest that using continuously tunable laser
sources in place of the discretely tunable sources would lead
to considerable performance improvement. However, we
should also note that the density of sampling wavelengths
need not be any greater than what is required to resolve the
absorption features of a light molecule at the gas pressure in
the photoacoustic cellsat or near 760 Torrd.

Finally, the model presented here assumes that the mo-
lecular absorption cross sections and absorption wavelengths
are accurately known. However, in practice this may not be
the case, although for the purposes of creating the simulation

model and optimizing the CWA sensor performance the un-
certainty does not play a major role. Therefore, in our current
work leading to experimental validation of the simulation
model, we measure the actual absorption coefficients of the
various constituents of the gas sample individually at the
specific CO2 laser wavelengths used in the experiment. This
procedure will provide the “most accurate” absorption coef-
ficients of the components of the “soup” at the precise CO2

laser wavelengths, thus eliminating problems arising from
the experimental uncertainty in the spectra obtained from
other sources. These measured values of the absorption cross
sections will then be used in the simulation model to provide
a better comparison with future experiments.
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